
Solution: We begin by solving for $EC = \sqrt{25^2-24^2} = 7$. Then $\tan{EDC} = \frac{7}{24}$.
By the tangent addition formula, we have
$\tan{BDC} = \tan{(BDE+EDC)} = \frac{\tan{BDE}+\tan{EDC}}{1-\tan{BDE}\tan{EDC}} = \frac{3+\frac{7}{24}}{1-3\left(\frac{7}{24}\right)} = \frac{79}{3} $.
Since $\tan{BDC} = \frac{BC}{CD}$, we have $\displaystyle BC = (CD)\tan{BDC} = 24\left(\frac{79}{3}\right) = 632$.
Notice that $\angle AGD = 90 - \angle BDC \Rightarrow \tan{AGD} = \frac{1}{\tan{BDC}} = \frac{3}{79}$.
Then $\tan{AGD} = \frac{AD}{DG} \Rightarrow DG = \frac{AD}{\tan{AGD}} = \frac{632}{\frac{3}{79}} = \frac{2^3 \cdot 79}{3}$.
Consider $\triangle HIG$. We have $\tan{HGI} = \frac{HI}{IG} \Rightarrow HI = (IG)\tan{HGI} = \frac{3}{79}(IG)$.
Notice that $\triangle EDC$ is similar to $\triangle HDI$, so $\frac{HI}{ID} = \frac{EC}{CD} = \frac{7}{24} \Rightarrow HI = \frac{7}{24}(ID) = \frac{7}{24}(DG-IG)$.
Combining our two expressions for $HI$, we get
$ HI = \frac{3}{79}(IG) = \frac{7}{24}(DG-IG)$.
Solving this for $IG$, we get
$IG = \frac{\frac{7}{24}(DG)}{\frac{3}{79}+\frac{7}{24}$.
But we calculated $DG = \frac{2^3 \cdot 79}{3}$ above, so upon substitution we get
$IG = \frac{\frac{7}{24}\left(\frac{2^3 \cdot 79}{3}\right)}{\frac{3 \cdot 24 + 7 \cdot 79}{24 \cdot 79}} = \frac{2^3 \cdot 7 \cdot 79^3}{3 \cdot 5^4} $.
Summing the distinct prime factors, we have $2+7+79+3+5 = 96$.
wow thats so much nicer than what i did
ReplyDeletei did some huge disgusting coordinate geo mess and after like 15 min of chugging it out i finally got IG T_T