Friday, December 30, 2005

Pick one, any one! Topic: Algebra. Level: Olympiad

Problem: (1989 USAMO - #5) Let $u$ and $v$ be real numbers such that

$(u + u^2 + u^3 + \cdots + u^8) + 10u^9 = (v + v^2 + v^3 + \cdots + v^{10}) + 10v^{11} = 8$.

Determine, with proof, which of the two numbers, $u$ or $v$, is larger

Solution: Consider the functions

$f(x) = 1+x+\cdots+x^8+10x^9$ and $g(x) = 1+x+\cdots+x^{10}+10x^{11}$,

which are monotonically increasing on the interval $ (0,\infty)$.

We are given that $f(u) = g(v) = 9$.

We have $g(x)-f(x) = 10x^{11}+x^{10}-9x^9 = x^9(10x-9)(x+1)$.

$f\left(\frac{9}{10}\right) = 1+\frac{9}{10}+\cdots+\frac{9^8}{10^8}+10 \cdot \frac{9^9}{10^9}$.

By summing the geometric series,

$f\left(\frac{9}{10}\right) = \frac{1-\frac{9^9}{10^9}}{1-\frac{9}{10}} + 10 \cdot \frac{9^9}{10^9}= 10-10 \cdot \frac{9^9}{10^9}+10 \cdot \frac{9^9}{10^9} = 10 > 9$.

Since f is an increasing function, $f(u) < f\left(\frac{9}{10}\right) \Rightarrow u < \frac{9}{10}$.

Hence $g(u)-f(u) = u^9(10u-9)(u+1) < 0 \Rightarrow g(u) < f(u) = 9$.

But since $g$ is an increasing function as well, we know $g(u) < g(v) = 9 \Rightarrow u < v$. QED.

--------------------

Comment: The last problem of the 1989 USAMO, so supposedly it is difficult, but that wasn't really the case. A simple analysis of $f$ and $g$ gives us the answer quickly.

--------------------

Practice Problem: (2002 USAMO - #4) Let $\mathbb{R}$ be the set of real numbers. Determine all functions $f: \mathbb{R} \to \mathbb{R}$ such that

$f(x^2 - y^2) = x f(x) - y f(y)$

for all pairs of real numbers $x$ and $y$.

5 comments:

  1. Do you think you'll make it to MOSP this year?

    ReplyDelete
  2. Well, that's my goal... I think I have a chance. Who are you?

    ReplyDelete
  3. I dont really know you at all, actually I found your blog on AOPS. It's actually been really helpful... thank you! I just noticed you were very proficient at these olympiad level problems and wondered if you that you're good enoguh yet to make MOSP.

    ReplyDelete
  4. Go Jeffrey go! Yeah, he has a good chance of making MOSP this year.

    1. Setting y = 0 we get f(x^2) = x f(x), and setting x = 0 we get f(-y^2) = -y f(y) so we know f(x) is an odd function. If we desire to find the value of some f(a), we can write f(a) = a^{ \frac{1}{2}} f(a^{ \frac{1}{2}}) = a^{ \frac{1}{2} + \frac{1}{4} } f(a^{\frac{1}{4}) = ... the expression a^{ \frac{1}{2^{n}} } tends to 1, so we have f(a) = f(1) a for all integers. Thus, f(x) = mx for some constant m.

    ReplyDelete