Problem: (2006 Bellevue BATH Team) Evaluate $ \displaystyle \sum_{a=1}^{10} \sum_{b=1}^{10} \sum_{c=1}^{10} \sum_{d=1}^{10} dcab $.
Solution: Note that we can write the sum as
$ \displaystyle \sum_{b=1}^{10} \sum_{c=1}^{10} \sum_{d=1}^{10} (1 \cdot bcd+ 2 \cdot bcd + \cdots + 10 \cdot bcd) = \sum_{b=1}^{10} \sum_{c=1}^{10} \sum_{d=1}^{10} (1+2+\cdots+10)bcd$.
Using the same idea, we can write it as
$ (1+2+\cdots+10)(1+2+\cdots+10)(1+2+\cdots+10)(1+2+\cdots+10) = 55^4 $.
QED.
--------------------
Comment: Evaluating multiple summations this way is very effective. Other examples include factoring the harmonic series
$ \displaystyle 1+\frac{1}{2}+\frac{1}{3}+\cdots = \left(1+\frac{1}{2}+\frac{1}{2^2}+\cdots\right) \left(1+\frac{1}{3}+\frac{1}{3^2}+\cdots\right) \left(1+\frac{1}{5}+\frac{1}{5^2}+\cdots\right) = \prod \sum_{i=0}^\infty \frac{1}{p^i} $
or, more generally, any integer value of the Riemann Zeta Function
$ \displaystyle \zeta(s) = 1^s+\frac{1}{2^s}+\frac{1}{3^s}+\cdots = \prod \sum_{i=0}^\infty \frac{1}{p^is} $.
Furthermore, since
$ \displaystyle \sum_{i=0}^\infty \frac{1}{p^is} $
is an infinite geometric series of common ratio $ \frac{1}{p^s} $, we can say that
$ \zeta(s) = \prod \frac{1}{p^s-1} $,
where the product is taken over all primes $ p $.
No comments:
Post a Comment